<Comparison of relative radiometric normalization tec

<Comparison of relative radiometric normalization tec

<Comparison of relative radiometric normalization tec

<Comparison of relative radiometric normalization tec

<Comparison of relative radiometric normalization tec

<Comparison of relative radiometric normalization tec

<Comparison of relative radiometric normalization tec

<Comparison of relative radiometric normalization tec

<Comparison of relative radiometric normalization tec

<Comparison of relative radiometric normalization tec

<Comparison of relative radiometric normalization tec

<Comparison of relative radiometric normalization tec

<Comparison of relative radiometric normalization tec

<Comparison of relative radiometric normalization tec

<Comparison of relative radiometric normalization tec

参考文献

Chavez, P.S., Jr., 1988. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing Environ., 24: 459-479.

Crist, E.P. and Cicone, R.C., 1984. Application of the Tasseled Cap concept to simulated Thematic Mapper data. Photogramm. Eng. Remote Sensing, 50(4): 343-352.

Elvidge, C.D., Yuan, D., Weerackoon, R.D. and Lunneta, R.S., 1995. Relative radiometric normalization of Landsat Multispectral Scanner (MSS) data using an automatic scattergramcontrolled regression, Photogramm. Eng. Remote Sensing, 61(10): 1255-1260.

Hall, EC. and Badhwar, G.D., 1987. Signature-extendable technology: global space-based crop recognition. IEEE Trans. Geosci. Remote Sensing GE-25(I).

Hall, EC., Strebel, D.E., Nickeson, J.E. and Goetz, S.J., 1991. Radiometric rectification:  toward a common radiometric response among multidate, multisensor images. Remote Sensing Environ., 35: 1 l-27.

Jenson, J.R. (Editor), 1983. Urban/suburban land use analysis. In: Manual of Remote Sensing, 2nd ed. American Society of Photogrammetry, Vol. 2, pp. 1571-1666.

Kauth, R.J. and Thomas, G.S., 1976. The Tasseled Cap - a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. Proc. Symp. Machine Processing of Remotely Sensed Data, Purdue University, West Lafayette, IN, pp. 4B4l-4B5I.  

Kauth, R.J., Lambeck, RF., Richardson, W., Thomas, G.S. and Pentland, AP., 1978. Feature extraction applied to agricultural crops as seen by Landsat. The LACIE Symposium Proceedings of the Technical Session, pp. 705-722.

Kniezys, F.X., Shettle, EP, Gallery, W.O., Chetwynd, J.H., Abreu, L.W., Selby, J.E.A., Clough, S.A. and Fenn, R.W., 1988. Atmospheric Transmittance/Radiance: Computer CodeLOWTRAN-7, AFGL-TR-88-0177, Air Force Geophysis Lab, Hanscom AFB, MA.

Lunetta, R.S., Lyon, J.G., Sturdevant, J.A., Dwyer, J.L., Elvidge, C.D., Fenstermaker,  L.K., Yuan, D., Hoffer, S.R. and Weerackoon, R., 1993. North American Landscape Characterization (NALC) Research Plan. U.S. EPA/6OO/R-931135, 419 pp.

Markham, B.L. and Barker, J.L., 1987. Radiometric properties of U.S. processed Landsat MSS data. Remote Sensing Environ., 22: 39-7 1.

Marsh, SE. and Lyon, R.J.P., 1981, Quantitative relationships of near-surface spectra to Landsat radiometric data. Remote Sensing Environ., 10: 241-261.

Salvaggio, C., 1993. Radiometric scene normalization utilizing statistically invariant features.  Proc. Workshop Atmospheric Correction of Landsat Imagery, Defense Landsat Program Office, Torrance, CA, pp. 155-159. Schott, J.R., Salvaggio, C. and Volchok, W., 1988. Radiometric scene normalization using pseudoinvariant features. Remote Sensing Environ., 26: l-6.

Tame, D., Deroo, C., Duhaut, P., Herman, M. and Mocrette, J.J., 1990. Description of a computer code to simulate the satellite signal in the solar spectrum: the 5S code. Int. J. Remote Sensing, 2(4): 659-668.

Turner, B.L. II, Moss, R.H. and Skole, D.L., 1993. Relating Land Use and Global Land-Cover Change, International Geosphere- Biosphere Program, Report No. 24.

Yuan, D. and Elvidge, CD., 1993. Application of relative radiometric rectification procedure to Landsat data for use in change detection. Proc. Workshop Atmospheric Correction of Landsat Imagery, Defense Landsat Program Office, Torrance, CA, pp. 162-166.

赞 (0) 评论 分享 ()